配線用遮断器・漏電遮断器の機能と選定

電気設備の知識と技術 > 電気設備設計の基礎知識 > 配線用遮断器・漏電遮断器の機能と選定

配線用遮断器と漏電遮断器の概要

電路は、大地と常に絶縁状態を維持しなければならない。経年劣化による絶縁不良、人為的ミスによる損傷、自然災害など、多くの要因で電気事故が発生するため、これを保護する設備の設置が義務付けられている。

短絡や地絡は数多く発生しており、配線用遮断器や漏電遮断器で保護しなければ、施設全体の広範囲停電を引き起こしたり、周辺地域に停電を引き起こす「波及事故」につながる。

配線用遮断器は、電路に過大に流れた電流を検知して、自動的に回路から負荷を遮断する安全装置である。漏電遮断器は、配線用遮断器と同様に、過大に流れた電流を検知して回路を遮断するだけでなく、電路から大地への漏電を検知して、負荷を遮断する。

配線用遮断器と漏電遮断器は、電路の安全を確保するために重要な装置であり、安全かつ安定した電力供給を行うために、綿密な計画を行わなければならない。ここでは、配線用遮断器と漏電遮断器の特徴、選定方法などを解説する。

配線用遮断器の機能と特徴

過電流保護機能

配線用遮断器には、過電流保護機能を備えている。配線用遮断器に設定された電流値を超えた場合、自動で回路を遮断して電路を保護し、過負荷電流による機器の損傷や、ケーブルの焼損を防止できる。

住宅内の電気機器を例として紹介する。住宅用の配線用遮断器は、20Aの電流が流れると遮断する、小型の配線用遮断器によって保護されている。この電気系統において、ドライヤーと電子レンジを同時に使用すると、回路に流れる電流は20Aを超過する。

20Aを超過した瞬間に動作するのではなく、長時間に渡って過負荷電流が流れ続けた場合に動作するのが特徴で、瞬間的な過負荷であれば、遮断器が動作することはない。

ケーブルも、ごく短い時間であれば、過負荷電流を流すだけの能力を備えており、20Aを超過することで直ちに電気事故につながることはない。しかし、電線や配線器具に損傷を与えるような、定格電流の数倍にもなる大電流が流れた場合には、即時に遮断する特性を併せ持っている。

配線用遮断器の動作特性

配線用遮断器の動作は、反限時特性と呼ばれる特性がある。電流値の1倍未満では動作せず、大電流ほど瞬間的に動作するという特徴がある。

反限時特性とは、流れる電流の値によって動作特性が違うことを示しており、負荷の抵抗変動や始動電流、突入電流など、瞬間的に発生する大電流であっても遮断器が不要動作しないよう考慮された機能である。

配線用遮断器の動作特性は、メーカー毎に規定された数値があり選定表が公開されている。20倍の過電流が流れた場合は瞬時に引き外すなど、電流の比率と引き外しの特性がわかる。

動力負荷の配線用遮断器を選定する場合、始動電流や突入電流の値が瞬時引外し特性の曲線と交差しないよう計画する。始動時に発生する大電流でトリップするようでは、機器に電源供給ができない。

特性表に対し、計画している電気機器の始動電流や突入電流の値をプロットし、特性曲線と交差しない容量の配線用遮断器を選定しなければならない。

動力負荷に対して配線用遮断器を選定する場合、全電圧始動やスターデルタ始動を行えば、始動電流は定格電流の10倍から15倍程度流れる。不要動作による始動不能を引き起こさないために、配線用遮断器の瞬時引外し特性を17倍前後として選定すると良い。

電動機に流れる電流の特性と、配線用遮断器の特性を確認し、保護協調カーブを作成して保護協調を確認すれば確実である。

連続した高負荷を遮断器に与えない

長時間に渡って高負荷を受ける遮断器は、常時一定の加熱にさらされるため、寿命が短くなり、故障や不要動作の原因になる。

遮断器に対し連続して長時間の高負荷を与えるのは望ましくない。電灯負荷や電熱負荷の場合、連続負荷を有する分岐回路の扱いになるため、負荷容量は定格電流の80%になるよう選定する。

負荷による保護の手法

HID系照明回路の保護

水銀灯などHID系照明は、高圧パルスを発生させるため始動電流が高く、始動時間も長時間に及ぶ。電動機を持たない電灯負荷の中でも、始動電流が大きくなるため、始動電流でトリップしないよう遮断器の定格電流を選定する。

始動電流の大きな照明器具を多数接続すると、瞬間的に発生する始動電流が非常に大きくなる。長時間、定格動作電流の1倍を超える電流が流れると、遮断器が動作し回路が遮断される。接続台数と定格電流の設定に注意が必要である。

電流に対する変圧器の保護

変圧器の特性として「励磁突入電流」がある。通電していない変圧器に電圧を印加した瞬間、変圧器の鉄心磁束が飽和し、擬似的な短絡状態が発生する。擬似短絡により定格電流の10~15倍を超える大電流が瞬間的に流れ、変圧器の定格電流値に推移するまで数秒の時間を要する。

励磁突入電流は電源投入時だけでなく、瞬時電圧低下であっても発生するため、変圧器の運用中にも発生する。変圧器の保護を計画する場合、励磁突入電流で、遮断器が不要動作しないように設計しなければならない。

変圧器の種類によって励磁突入電流の値は異なるが、投入後0.1秒時点で、定格電流の10倍程度流れる。変圧器の保護を保護するには、長時間の連続負荷に該当するため、遮断器の定格電流は「変圧器定格電流の1.25倍」にて選定しなければならない。

動作特性を考慮し、瞬時引き外し電流値は「第1波の励磁突入電流 / √2」より小さくならないよう、特性表から遮断器を選定することが重要である。

コンデンサの保護

コンデンサ負荷を保護する場合、遮断器はコンデンサの最大許容電流に耐えるだけでなく、電源投入時に発生する過渡的な突入電流にも耐える必要がある。コンデンサの場合は定格電流の1.5倍を基準とし、突入電流で不要動作しないよう、遮断器選定を行う。

配線用遮断器の使用環境上の注意点

配線用遮断器の取付方向

配線用遮断器は、電源を上部から接続し、負荷を遮断器の下部から取り出す。遮断器のの動作特性は「標準取付」を基準して設定されているため、指定された方向以外の取付は厳禁である。

配線用遮断器は横向きに取り付けられる機種も存在し、分電盤内スペースを有効利用が可能である。横向き取付の動作保証がない配線用遮断器では、角度を変えて設置してはならない。

標準取付方向を守らずに遮断器を取り付けると、配線用遮断器に想定外の重力が加わって定格電流が変化したり、引外し電流値が変化するおそれがあり危険である。

周囲環境による特性変化

配線用遮断器は周囲環境によって動作特性が変化する。最も大きな変化を引き起こす要素は「周囲温度」である。配線用遮断器は-10~60℃を使用周囲温度として設定しており、動作特性は40℃が基準である。

周囲温度が40℃以下であれば、定格電流に対する負荷電流は90%以下として使用できる。温度が高くなると動作特性が変化し、40℃を超え50℃以下の場合80%以下、50℃を超え60℃以下の場合は70%と、耐えられる負荷電流の値が小さくなる。

周囲温度とは、分電盤を設置する室温ではなく「盤内温度」である。ブレーカーや発熱機器の集中設置や、直射日光といった要因で盤内温度が高くなると、周囲温度を高く設定するか検討すると良い。

配線用遮断器を設置する環境の周囲湿度は85[%Rh]以下とする。湿度が高すぎると、配線用遮断器の表面に結露が発生することがあり、絶縁不良の原因となる。

熱動式と電子式の特性変化

熱動式の配線用遮断器では、温度によってバイメタルの動作温度が変動する。周囲温度が20℃の場合、定格遮断電流は110%となり、周囲温度か60℃の場合、定格遮断電流は90%となる。

電磁式の配線用遮断器では、温度によって可動鉄心の制御油の粘度が変化する。動作電流は変化しないが動作時間が変動するのが特徴で、周囲温度が10~20℃の場合、動作時間は160%程度まで上昇し、周囲温度が60℃の場合、動作時間は75%となる。

配線用遮断器の遮断電流が変動することで、適切に保護できていた回路が保護不能となる。設置場所の温度環境にも注意が必要である。

定格電流による運用

配線器具を定格電流の範囲外で使用することは厳禁である。50AF/20ATの配線用遮断器は20Aを超える電流に対して保護するが、16~19Aの負荷電流を流し続けても遮断しない。

配線用遮断器の二次側に接続した配線器具が定格15Aの場合、定格電流を超える電流が流れ、配線器具本体の異常発熱や発火の危険性がある。

定格電流を超える電流値で運用した場合の異常発熱は、配線器具だけでなく電線にも発生する。VVFケーブルやコード類も同様に、定格電流を超過すると異常発熱の原因となり、耐用年数の低下、絶縁の劣化につながる。

配線器具を定格電流値異常の電流で使用したのであれば、使用者の過失としてメーカー保障を受けられない。無理な使い方をせずに、安全な電気利用を心掛けるようにすべきである。

配線用遮断器の開閉耐久性能

開閉耐久性能は、配線用遮断器を開閉できる回数であり、フレームサイズ毎にJISで規定されている。フレームサイズが大きいほど、開閉耐久性能が小さくなる傾向にある。

  • 100AF:10,000回(無通電8,500回、通電1,500回)
  • 225AF:8,000回(無通電7,000回、通電1,000回)
  • 400AF:5,000回(無通電4,000回、通電1,000回)
  • 800AF:3,000回(無通電2,500回、通電500回)

開閉耐久回数は周囲温度40℃を基準にした数値であり、周囲温度が低ければ多くなり、高ければ少なくなる。周囲温度が高い環境では、開閉回数だけでなく安全に遮断できる電流値も変化する。

無通電時の通電時開閉と違い、電圧引外し装置を使用した開閉動作は、開閉耐久回数の10%程度までで限界となる。過電流や過電圧など、電路の保護動作を繰り返した場合、上記の開閉耐久回数に達する以前に故障する。

テストボタンによる開閉動作

漏電遮断器に内蔵されているテストボタンは、漏電と同様の状態を強制的に作り出し、漏電遮断器が動作するかを確認する装置である。

テストボタンによる遮断器動作は、引外し装置の強制作動による開閉のため、過負荷によって遮断器が動作するのと同等の負担が、遮断器の機構に発生する。

テストボタンによる開閉動作は遮断器の摩耗を促進させ、所定の開閉回数以前にブレーカーの開閉寿命に至ってしまうため、動作試験を行う場合を除き、テストボタンを使用した開閉を行うことは避けると良い。

配線用遮断器の過電圧保護機能

配線用遮断器の過電圧保護機能は、中性線欠相(単相3線式回路の白線欠落による回路故障)により発生する異常電圧を検知して、回路を遮断する機能である。

配線用遮断器は100V、200V、400Vを基本として運用する。中性線欠相といった事故で異常電圧が発生した場合、機器の故障につながるため即時遮断が求められる。

中性線欠相による過電圧

中性線欠相とは「黒-白」または「赤-白」で構成されている単相3線式200-100V回路において、白線が切り離されることで回路が「黒-赤」構成になり、機器の定格を大きく逸脱する電圧が印加されてしまう現象である。

配線用遮断器は過電圧から機器を保護するため、135Vを超えた電圧を検知すると、回路遮断の機構が動作してトリップする。

800W(100V)のハロゲンヒーターを「黒-白」、200Wの液晶テレビ(100V)を「赤-白」に接続した状態で通電し、白線を切断する。200V回路に液晶テレビとハロゲンヒーターが直列に接続された状態になり、分圧により160Vの電圧が液晶テレビに印加される。

100V定格のテレビに160Vを印加した場合、機器内の基盤等が破損する。

これは事故の一例であるが、事故を防止するため、過電圧保護機能によって異常電圧が発生したのを即時感知し、電路を遮断することで安全が確保されている。

配線用遮断器の選定と計算

幹線を保護するには、幹線の許容電流以下の配線用遮断器を設けることが電気設備技術基準に定められている。幹線に電動機が接続されている場合、下記の計算方法となる。

  • 遮断器定格電流 =(電動機定格電流の合計×3)+ 他の機器の定格電流の合計

定格電流20Aの電動機と、電熱負荷20Aが併設されている電路の保護を考えた場合、20A × 3 + 20A = 80A となるため、直近上位の配線用遮断器で100Aを選定する。

電動機回路の配線用遮断器を選定する場合、始動電流による瞬間的な大電流が流れるため、幹線ケーブルの許容電流よりも遮断器の定格電流が大きくなる。

電動機が始動する瞬間に流れる電流は一時的なものであり、幹線に悪影響を及ぼさないため、定格電流値よりも小さい許容電流が許容されている。

配線用遮断器の定格電流値が、保護対象の幹線の許容電流の2.5倍を超えるとき、配線用遮断器は2.5倍以下の定格電流値に設定しなければならない。

幹線の許容電流値が100Aを超える大容量の場合、電動機容量の3倍の配線用遮断器を選定すると、800Aや1200Aという非常に大きな配線用遮断器となり経済性に難がある。

大容量遮断器で保護する場合は、負荷電流値の直近上位に当たる定格電流を持つ配線用遮断器を使用しても良い。

配線用遮断器による動力回路の保護

動力負荷の配線用遮断器を選定する場合、電灯回路と違い、注意しなければならない点が数多くある。動力負荷を始動した瞬間に発生する、始動電流や突入電流を考慮した容量選定をしなければならない。

電動機の始動電流

電動機の回転機械は、回転速度が定格速度に至るまでの間、定格電流よりも大きな電流が流れる。これを始動電流と呼ぶ。始動電流は定格電流の5倍~7倍程度の大電流であり、7~10秒程度継続する。

始動電流で配線用遮断器が動作するおそれがあるため、配線用遮断器を選定する場合、始動電流の数値を考慮する。

配線用遮断器の動作特性は、20倍程度の電流が流れた場合は瞬時引外しを行うが、限時要素により、10倍前後の瞬間的な電流の場合は引外し動作を行わない。配線用遮断器のメーカーごとに動作曲線が違うため、選定の際には確認が必要である。

電動機の過負荷保護

電動機は、個々の銘板に表示された電流値を定格電流として計算できるが、エレベータやエアコンなど、特殊な電動機の場合は、メーカーから「定格の何倍の電流が流れるか」を確認し、定格電流を決める。

エアコンなど、圧縮機を内蔵している電動機は、熱交換のサイクルに過負荷を生じた場合に電流値が大きくなる特性がある。定格電流の1.5倍もの電流が流れる。配線用遮断器の選定においては、この最大負荷電流の値を考慮する。

電動機の定格電流と始動電流を把握し、配線用遮断器を選定する。配線用遮断器は定格電流以上、かつ始動電流で動作しない値のトリップ値で選定する。始動電流の継続時間と電流値が明確であれば、動作曲線からブレーカーサイズを選定し、直近上位とすればミストリップは起きないであろう。

内線規程では「配線用遮断器の定格電流は、当該電動機の定格電流値の3倍(50Aを超える場合は2.75倍)以下」としているため、大き過ぎる選定にならないよう注意する。

電動機回路の許容電流とサーマルリレーによる保護

電動機は始動電流が大きいが、始動電流は瞬間的に流れる電流であるため、始動電流異常の許容電流を選定する必要はない。ケーブルの許容電流は、配線用遮断器のトリップ値に対し「1/2.5倍」以上の許容電流があれば良いとされている。

電線の許容電流値は「がいし引き配線の値」とできるため、より経済的なケーブルサイズの選定が可能である。

単独の電動機に電源供給をするケーブルの場合、定格電流が50A以下の場合はその1.25倍以上(50A超過の場合は1.1倍以上)の許容電流値を持つケーブルを選定しなければならない。

配線用遮断器とケーブルの選定事例

定格電流が88Aの電動機に対する配線用遮断器とケーブルを計画した場合、配線用遮断器は175AT、ケーブルサイズ38sq(許容電流155A)が適用できる。

160~180Aは瞬間的に流れる電流であり、通常時は88Aの電流が流れる。175ATのブレーカーでは過電流保護が成立しない。配線用遮断器の二次側にサーマルリレー(熱動継電器)とマグネットスイッチを設け、動力回路の保護を行うのが一般的である。

電動機が故障しファンやポンプが正常回転しないと、回転抵抗が増加するため電圧が低下し、電流値が増加する。ケーブルには定格電流よりも大きな電流が流れ、電動機や電線が異常発熱するが、配線用遮断器は大容量なため動作しない。

異常状態を切り離すため、配線用遮断器の二次側にサーマルリレーを設置し、温度上昇を検知させて回路を開放する。

モーターブレーカーによる電動機保護

電動機を保護する場合、モーターブレーカーと呼ばれる遮断器を設置する方法がある。モーターブレーカーは名称の通り、電動機の保護を行うために開発された遮断器で、電動機の始動時に発生する始動電流や突入電流に対して、一定時間は動作しないという特徴がある。

サーマルリレーを設置せず、遮断器のみで電動機を保護できる可能性があり、コストダウンにつなげられる。モーターブレーカーの選定方法は、当該遮断器に接続される負荷容量・定格電流と同一の容量を持つ製品を選定するのみであり、計画が容易である。

モーターブレーカーは電動機の保護に対して効果を発揮するが、その一次側ケーブルや変圧器、または発電機に対しては大きな始動電流が流れるので、保護協調を検討し上位側の余力を確認する。

保護協調が図られていないと、モーターブレーカーよりも上位側の遮断器が動作し、広範囲に停電を引き起こすおそれがある。

遮断器のロックアウト

ロックアウトとは、遮断したブレーカーを機械的にロックし、動作しないよう施す安全装置の事である。工場では電気系統の改修が数多く発生するため、ブレーカーのオンオフが頻繁に行われる。不用意に遮断器を操作すると、停止中の機械が動き始めたり、停電回路が突然活線になるなど、付近に人が居ると非常に危険である。

動力電源は危険度が高く、直接的な感電による損傷、動作した機械への巻き込まれなど、事故が致命的になるので、作業時の安全確保のためロックアウトが使用される。

ブレーカー前面に「作業中」「投入禁止」のテープを貼付するという方法も採用されているが、物理的な衝撃によって誤投入のおそれがある。万全を期すのであれば、機械的にロックすることが望まれる。

工具を使って締め付けをすると、面倒といって取付けを省略してしまうので、工具を使わずに締め付けができるロックアウトを使用すれば、手軽に安全性を高められる。

漏電遮断器(ELCB)

漏電遮断器は、過電流保護機能と漏電遮断器能を持つ遮断器である。ELCB (Earth Leakage Circuit Breaker)と呼ばれる保護装置である。電路に漏電が発生した場合に、漏電電流を検出し回路を遮断する機能を持っている。

漏電遮断器の動作原理は、電源となる導体の電流絶対値の差を監視し、差が一定の値を超過した瞬間に動作するというものである。往きの電流と帰りの電流は、直列回路であれば同一になるが、一部の電流が大地に漏洩していると、往きの電流と帰りの電流の差がゼロでない。これを異常と判断して、回路が遮断される。

漏電事故の原因

電路に漏電が発生する主な原因は、電線が損傷することにより被覆内の銅線が露出し、建材や機器の外箱に接触したり、電気機器が水濡れによって絶縁不良を起こすことが考えられる。電線や電気機器が経年劣化により損傷し、内部の充電部が露出した状態になるなども漏電の原因となる。漏電状態は、絶縁された電気回路に流れる電流の一部が回路外に流出している状態であり、非常に危険である。流出した電流に人が触れると感電事故である。

漏電遮断器が設置されていれば、漏電事故の際に即時に電路を電流することで、電路の健全性を維持できる。しかし、分電盤主幹など大電流が流れる部分に漏電遮断器を採用すると、二次側の一部機器の漏電によって主幹が動作してしまい、広範囲の停電を引き起こす。漏電遮断器を主幹に採用するのはできる限り避け、水周りの分岐遮断器のみを漏電遮断器とするなど、漏電事故が発生した際の被害を最小限に抑える回路分けも考慮する。

主幹に漏電遮断器を採用する場合は、動作電流を100~200mAに設定し、分岐の漏電遮断器の動作電流を15~30mAに設定することで、保護協調を取ることが可能である。大きな地絡電流が流れた場合、200mAなど高めの設定にしていても、下位の漏電遮断器と同時にトリップしてしまうことがある。これを防止するためには、遮断時間が遅い、時延型の漏電遮断器を選定すると良い。

感度電流と動作時間による漏電遮断器の選定基準

漏電遮断器は感度電流に高感度形・中感度形・低感度形の3種類がある。漏電遮断器の動作時間に高速形・時限形・反限時形に分類されている。

高感度形・高速形

高感度形・高速形は、感電防止を目的とする漏電遮断器である。感度電流は15mAまたは30mAで、動作時間は0.1秒以内である。人などが漏電した電路に接触し、地絡電流が流れた場合、即時に漏電遮断器が動作し電路が遮断される。分電盤の主幹に設置すると、停電範囲が広くなってしまい、重要機器などが停止するおそれも考えられるので、分岐回路ごとに設置する計画とする。

高感度形・時延形

高感度形・時延形は、保護強調を目的とする漏電遮断器である。感度電流は15mAまたは30mAであるが、動作時間は0.3秒~0.8秒である。分電盤の主幹に使用することで、漏電の範囲を制限し、広範囲停電を防止できる。末端負荷ほど高速にし、上位遮断器を順に時延させることで、保護協調を確保する

中感度形・高速形

キュービクルの配電用遮断器に漏電遮断器を使用する場合、その幹線を保護するために使用する。感度電流は100mA・200mA・500mAなどである。動作時間は0.1秒以内である。多くの微小な漏洩電流が集中した場合、個々の分岐用漏電遮断器では感知しなくても、幹線など多数の負荷が集中している部分では、高感度形の漏電遮断器では保護できないほど、漏洩電流が高まる可能性がある。

中感度形・時延形

幹線の保護用に使用する漏電遮断器であるが、電路のこう長が長く、回路容量が大きい場合に採用する。漏電火災の防止に効果を発揮する。

漏電遮断器の不要動作の原因

漏電遮断器は、誘導雷、始動電流、開閉サージ、外部磁界、静電容量など、多数の外的要因によって不要動作を発生する。

外部磁界による不要動作

漏電遮断器の近くに大電流が流れる幹線が敷設されている場合、発生する磁界によってZCTが地絡と誤判断し、漏電遮断器が動作する。一般的には、ZCTに磁気シールドが施されているため、不要動作が発生することはほとんどない。

始動電流による不要動作

漏電遮断器は、配線用遮断器としての機能を持つものがあり、突入電流や始動電流が、瞬時引外し電流値よりも大きくなると、不要動作を発生する。配線用遮断器と同様に保護協調を考慮しなければならない。

誘導雷・開閉サージによる不要動作

誘導雷が電路に侵入した場合、漏電遮断器が不要動作する。しかし、一般的な漏電遮断器は、衝撃波不動作形が採用されているため、多くの場合問題にならない。

金属管や金属ダクトに電線を収容している場合、対地静電容量が大きくなるため、常時漏れ電流が大となる。ここで、電磁開閉器などが摩耗していると、接点サージが過大になり、不要動作する。電磁開閉器を交換するなどしてサージを小さくする、漏電遮断器から負荷までの距離を短くする、定格感度電流の見直しをするなど、不要動作対策を実施する。

静電容量による不要動作

インバータやノイズフィルタなど、高調波成分を含む電気機器が回路に含まれている場合、インバータとモータ間の配線敷設距離が長くなると、配線から漏洩電流が流れやすくなる。インバータのスイッチング周波数が高い場合、漏洩電流がより大きくなる。インバータはHf蛍光灯にも使用されており、極めて広く普及している。

この漏洩電流は、高い周波数となっているため人体には比較的安全な電流であるが、従来の漏電遮断器は、この静電容量によって発生する漏洩電流と、地絡事故によって発生する漏洩電流の区別ができず、インバータが接続されている電路の漏電遮断器が不要動作する現象が発生していた。

現在では高調波対策の施された漏電遮断器が一般的となっているため、高調波による不要動作の事故は少なくなっているが、インバータが多数設置されている電路においては、別の電路での1線地絡事故が発生した場合、静電容量によるもらい事故を受ける事例はまだ多く、問題視されている。

B種接地が施された接地系の電路においては、電路は「対地静電容量」と「対地絶縁抵抗」を通じて大地と接続された状態となっており、漏洩電流がB種接地に還流している。漏洩電流は ICR = 2πfC × 電圧 A で示されるため、静電容量が大きいほど、周波数が高いほど大きな電流が流れる。

静電容量は電線の種別や敷設方法で大きく変化し、電線の種別ではCVケーブルよりIV電線の方が大きく、敷設方法では架空より埋設の方が大きくなる。

大きな漏洩電流が常時流れている回路で、漏洩電流の原因を取り除けない場合は、対地静電容量によって発生する電流値に見合った感度に変更することで予防が可能である。この場合地絡事故によって上位の漏電遮断器が動作しないよう、保護協調を考慮した設定とすることが重要である。

電気設備の知識と技術 > 電気設備設計の基礎知識 > 配線用遮断器・漏電遮断器の機能と選定